Creating Features out of Text
by John Mark Osborne
www.databasepros.com

| thought about titling this third article in the Philosophy of FileMaker series, "Parsing
Text" but, it sounds boring. Manipulating text is so much more than cleaning up imported
or improperly inputted data. Text manipulation allows a developer to create features that
aren’t possible with a single FileMaker tool. The real power of FileMaker exists in
combining tools much like a carpenter uses multiple tools to build a house. The
Philosophy of FileMaker teaches you how to use these tools to create your own unique
solution. As you read this article, keep reminding yourself that you don't want to
memorize the techniques presented but imbibe their essence. Even though this article is
designed to teach rather than tell, it's important to remind yourself while you are reading
that there is a difference between regurgitating techniques and truly understanding their
abilities.

The Basics

Before diving into feature creation, it’s important to discuss the foundation of text
parsing. When | started writing this article, | decided to look up the word "parse".
Several dictionaries later, | finally found one that gave a modern day definition
appropriate to the computer sciences. The word "parse" is defined as, "to analyze or
separate (input, for example) into more easily processed components." For the average
database developer, parse means to separate first and last names into separate fields.
And, this is where our journey begins. Before discovering how to create features with
text parsing, foundational concepts need to be studied.

Let's say you just imported a whole bunch of contact information into a FileMaker Pro
database. Unfortunately, all the first and last names are contained within a single field,
making sorting by last name impossible. For the sake of a simple example, let's say all
the names contain a single word for the first name and a single word for the last name.
There are more sophisticated formulas for parsing multiple word last names, middle
names, titles and more but, that's not the focus of this article.

The best method for studying a text parsing routine is to use example data. Let's use my
name in a field called Name:

Name = John Osborne

The simplest way to parse my name into separate fields is to use the Left and Right
functions:

Left(Name, 4)

Right(Name, 7)

The Left function grabs everything from the first character to the fourth character while
the Right function grabs seven characters starting from the end. The result for the first
formula is "John" and the second is "Osborne". However, the formulas are not flexible
enough to handle first names that are less or greater than four characters or, last names
that are less or greater than seven characters. Luckily, FileMaker, Inc. provides the
Word functions in FileMaker Pro 3.0 and later. Therefore, a more dynamic solution is the
following:

LeftWords(Name, 1)
RightWords(Name, 1)

Word functions like LeftWords, MiddleWords and RightWords use an algorithm to
determine where one word ends and another begins, thus, providing a dynamic text
parsing formula. The essence of the algorithm is that spaces are word separators. What
most people don't know is how much more complicated the algorithm is. For instance,
spaces aren't the only characters identified as word separators and it's your job to know
which ones. I'm not saying you should memorize the word separator character set but, it
is important to know how to test your data against the Word functions. Simply place
your formula into a Define Fields calculation and start entering sample data. It's
important to test as many variables as possible within reasonable expectations of the
type of data that will be entered. For example, try entering the following:

204.182.23.89
Osborne, John
jmo@filemakerpros.com

It's interesting to note that punctuation by itself is not considered a word separator but,
punctuation followed by a space is considered a word separator. In addition, many
characters are considered word separators even if they aren't followed by a space, such
as an at sign in an email address. However, what's really important to learn from this
lesson is that the Word function algorithm may not react exactly as you expect so you'd
better test it with a sampling of the expected data entry.

Once you've tested your data and determine the LeftWords function will perform as
required, you'll want to transfer your formula from a Define Fields calculation to a
scripted calculation, like a Set Field or Replace step. Why? Because this formula
doesn't need to recalculate each time the Name field is updated. Once you have parsed
the first and last name data into separate fields there is no need for the Name field. A
scripted calculation is better since it parses only when initiated and allows users to
modify the data in the first and last name fields. One of the biggest mistakes made by
inexperienced developers is using all of their formulas in Define Fields. Always pick the
right place to use your formula based on how the data will be used.

Before FileMaker Pro 3.0

Back in the old days, FileMaker programmers didn't have the convenience of the Word
functions. In order to parse a first and last name, it was necessary to combine the Left
and Right functions with the Position function to produce the same results. What a relief
to have the Word functions! But, | soon learned that these familiar old formulas still
serve a very important role. The Word functions are great if the algorithm matches your
needs but, more complex parsing solutions often require a nested function incorporating
the Position function. Let's introduce you to a better way of parsing text with the same
name example:

Left(Name, Position(Name, " ", 1, 1) - 1)
Right(Name, Length(Name) - Position(Name, " ", 1, 1))

These two formulas produce the same results as the LeftWords and RightWords
functions. So, why would you want to go through all the trouble of writing a more
complicated formula. The simple answer is control. The Position function enables you to
specify any search character or string you desire. It enables you to design the algorithm
rather than leaving yourself at the mercy of the Word function.

Let's examine these two formulas more closely. Anytime you want to study a nested
function, work from the inside out. Starting with the first example, isolate the Position
function nested inside the Left function. The Position function returns a number value
representing the character position of a search value in a string and has four
parameters. The first parameter is the text you are searching and can be provided by a
string in quotes, a field reference or another function. In the example provided, the
Name field is the text being searched. The second parameter is the search string and
can also be provided by a string, a field or a function. In this example, there is a space
between quotes to locate the word separator between the first and last name. The third
parameter is the character position to start looking and is generally a value of "1" so the
Position functions starts at the beginning of the text. The last parameter is the
occurrence and is almost always a "1" as well since the first occurrence of the search
string is typically the target.

It's always helpful to substitute actual data for the field references when working with a
nested calculation in order to better understand how it works. You can then distill the
result down much like an algebra equation:

Left(Name, Position("John Osborne", " ", 1, 1) - 1)

Since the space is located at the fifth character, the Position function returns a five as
indicated below:

Left(Name, 5 - 1)

Subtract one from five and now you have the same Left(Name, 4) formula discussed
earlier except that the number of characters returned by the Position function will
change depending on the length of the first name. Even more fantastic is the ability to
control the search string so you can modify this basic formula to meet any text parsing
job.

Let's not forget the slightly more complicated function for grabbing the last name. The
Right function works differently than other text functions, in that, it starts from the right
side of the text. Since the Position function starts from the left side, the only way to
marry the two formulas is figure out the length of the last name. This is done by
subtracting the beginning point and the ending point. Since the last name is the last
word in the field, the Length function is able to provide the ending point. Now all you
have to do is subtract the Length from the position of the space to get the number of
characters in the last name.

Memorize these fundamental text parsing formulas as they serve as the foundation for
almost all text parsing tasks. In general, the Philosophy of FileMaker doesn't
recommend memorizing information. It's better to remember the essence of a technique
and where to find an example rather than regurgitating the technique. However, straight
memorization in this case is okay since these formulas truly are the building blocks of all
parsing tasks.

New Request Made Easier

Now for the moment you've all been waiting. Let's create a feature using text parsing.
There are so many examples it's difficult to choose just one. | made the selection for this
article based on a common developer mistake. Many developers offer a single find
layout for all of a users searching needs. The layout comprises every single field a user
might need to search rather than multiple layouts customized for each search task. For
example, through interviews with a group of users, a developer might discover two
predominant search tasks. Rather than creating one giant find layout, create a find
layout for each of these tasks. This makes the interface easier to understand and the
users happier.

Along the same lines is trying to teach casual FileMaker users how to create new find
requests. If users have difficulty distinguishing the difference between browse and find
mode, what do you think will happen with new requests? Wouldn't it be better to provide
a simple request interface and create the new requests for the user? In the following
example, the new request interface has been distilled down to a single field so as to
teach the concept without a lot of bells and whistles. Once you understand the essence
of this technique, you will be able to apply it to more complicated find tasks.

Let's start with the specialized find layout. Instead of entering find mode to perform the
find, the layout for creating new requests will be shown in browse mode. Rather than
regular fields, global fields are utilized for find criteria entry. Again, this example has
been simplified so only one global field will be used. To make data entry as simple as

possible, the global field is formatted as a checkbox with all the possible find requests
that need to be created.

The real magic comes when creating the script. Let's take a look at the entire script in
figure 1 and walk through it step by step.

Allow User Abort [Off]
Set Error Capture [On]
Set Field [“x.find ™, “""*]
Go to Layout [“Form View 2”]
Pause /Resume Script []
Enter Find Mode []
Loop
Set Field ["a.text™, “"Middle("{" & x.find & "q",
Position("{" & x.find & "f", "{",
1, Status(CurrentRequestCount)),
Position("|" & x.find & "f", "{",
1, Status(CurrentRequestCount) +
1) - Position("q" & x.find & "{",
“1T"I 1 s
Status(CurrentRequestCount))) *]
Exit Loop If [“PatternCount(x.find, "") + 1 =
Status(CurrentRequestCount) *]
New Record/Request
End Loop
Perform Find []
If [*Status(CurrentError) = 400"]
Show Message [“No find criteria was entered. ”]
Else
If [*Status(CurrentFoundCount) = 0 *]
Show Message [“No records were found.”]
Show All Records
End If
End If
Go to Layout [original layout]

LR R R R 2

L g

LR R R

Figure 1
New Request Made Easier - this script parses a checkbox formatted field into new find
requests so the user doesn't have to know FileMaker.

The first two steps are pretty standard for most scripts and shouldn't need to be
explained. Starting with the third step, Set Field initializes the global field where new
request data is entered. This is done before displaying the special find layout to prevent
the user from seeing previous find criteria. The script pauses at this point so the user
can enter their find criteria by checking the appropriate boxes. When the user continues
the script, it enters find mode where the magic begins.

The key to this solution is the Set Field step at the beginning of the loop. It's purpose is
to transfer the values in the global checkbox field to new requests in find mode. Here is
the formula again with returns inserted between each parameter to make it easier to see
where one parameter ends and another begins:

Middle(
"q" & x.find & "|I",
Position("{" & x.find & "q[", "{[", 1, Status(CurrentRequestCount)),

Position("|" & x.find & "{I", "{", 1, Status(CurrentRequestCount) + 1) - Position("{" &
x.find & "q", "q[", 1, Status(CurrentRequestCount))

)

The purpose of this complicated formula is to grab each value from the checkbox. When
multiple values are selected from a checkbox or, other value list formatted field, they are
stored as a return separated list. For instance, if you select red, green and blue from a
checkbox field, the values are stored in the following manner:

redq
greenq
blue

In order to decipher a complicated formula, work from the inside out. Let's look at each
parameter of the Middle function. Once each piece makes sense, the entire formula will
be clear. The Middle function is similar to the Left and Right functions except that it
extracts text from the middle of a piece of text. It is comprised of three parameters. The
first parameter is the text being parsed. In this example, a concatenation of text and a
field are used. The reference to the x.find field is the global field formatted as a
checkbox where the user inputs their new request choices. But, why are the returns
added to the beginning and end of the x.find field? The reason becomes clear if you
consider a different example such as a return separated list of numbers:

219

19
6

If you search for a "1" in this list, two occurrences will be located since "1" also exists at
the end of the number "21". If you place returns at the beginning and end of the list, you
can search for a more unique value:

)l
219

19
61

Now it is possible to search for "{[19[" and locate a single occurrence of "1". While this
scenario is less likely with text values, it is possible and should be considered. Get in
the habit of plugging up this programming hole or it may come back to haunt you later.

The second parameter of the Middle function tells FileMaker at which character to start
extracting text. Instead of providing a static value, the starting point is the result of a
Position function. The parameters of the Position function are very similar to the
foundational example provided earlier. The main differences are the search string and
the occurrence parameter. It makes sense to search for a return character since they
surround the values we want to extract. But, what's up with the
Status(CurrentRequestCount) function? The Status(CurrentRequestCount) function
returns a number that corresponds to the current number of requests in find mode. This
value changes as the loop creates each request in order to update the calculation to
grab the next value in the return separated list.

If you understand how the starting point is located, the formula in the third parameter is
very similar. The third parameter of the Middle function asks for the number of
characters you want to grab starting from the value in the second parameter. In order to
get the number of characters or distance, subtract the end point from the starting point
(the formula would be a lot easier to understand if the Middle function wanted the end
point). The formula for the starting point is easy since it is exactly the same as the
formula in the second parameter. The ending point formula isn't much different since
you want to locate the following return in the list. To modify the Position formula to
locate the next return, just add "1" to the Status(CurrentRequestCount). This increments
the current request count by one and locates the return at the end of the value you are
trying to extract.

In order to prevent an endless loop, it is necessary to offer a step for exiting. There are
only seven script steps that can exit a loop: Halt Script, Exit Script, Quit Application,
Close, Exit Loop If, Go to Record/Request/Page [EXxit after Last, Next] and Go to Portal
Row [Exit after Last, Next]. You might consider the Go to Record/Request/Page step
but, new requests are being made to accommodate the number of values in the return
separated list rather than looping through a set of existing requests. That leaves only
one other viable option, Exit Loop If. The question is, what condition will exit the loop at
the right time? All you have to do is count the number of return characters in the list and
compare it to the number of requests. When the number of requests equals the number
of returns, all the value in the list have been parsed into new requests.

Once the loop is complete and all the values have been transferred to new requests, the
find can be initiated. The rest of the script is fairly standard scripting merely providing
error checking in case no records are found or no find criteria is entered. If the error

checking passes, the user is brought back to the layout where they started to view their
search results.

Conclusion

If you decide to implement this technique in your own solution, it is likely you will use a
more complicated combination of values to create your new requests. While some find
criteria may differ from request to request, as demonstrated in this article, others may
stay the same on each request, as was the case in a solution | created for a LASIK eye
surgeon. My client wanted to provide a search screen for locating all of the possible
surgery types without having to teach other surgeons how to create new find requests.
However, some data, like age range, needed to be the same on every find request. The
solution is simple. Create the first find request before entering the loop and after
entering the loop, duplicate the find request instead of creating a new one, and only
modify the values that need to change.

There are many other features that can be created using parsing routines. It's really up
to your imagination. Many other parsing techniques are free to download from my web
site such as parsing a CGl generated email, extracting email addresses, removing the
current record from a portal based on a self-join relationship, highlighting find criteria in
the found set and much more.

